Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 177-189, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38258640

RESUMO

Iron is an essential element for living organisms that plays critical roles in the process of bacterial growth and metabolism. However, it remains to be elucidated whether piuB encoding iron-uptake factor is involved in iron uptake and pathogenicity of Xanthomonas axonopodis pv. glycines (Xag). To investigate the function of piuB, we firstly generated a piuB deletion mutant (ΔpiuB) by homologous recombination. Compared with the wild-type, the piuB mutant exhibited significantly reduced growth and virulence in host soybean. The mutant displayed markedly increased siderophore secretory volume, and its sensitivity to Fe3+, Cu2+, Zn2+ and Mn2+ was significantly enhanced. Additionally, the H2O2 resistance, exopolysaccharide yield, biofilm formation, and cell mobility of ΔpiuB were significantly diminished compared to that of the wild-type. The addition of exogenous Fe3+ cannot effectively restore the above characteristics of ΔpiuB. However, expressing piuB in trans rescued the properties lost by ΔpiuB to the levels in the wild-type. Taken together, our results demonstrated that PiuB is a potential factor for Xag to assimilate Fe3+, and is necessary for Xag to be pathogenic in host soybean.


Assuntos
Ferro , Xanthomonas axonopodis , Soja , Virulência , Xanthomonas axonopodis/genética , Peróxido de Hidrogênio
2.
Phytopathology ; 113(5): 812-823, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059968

RESUMO

Bacterial blight resistance gene B5 has received little attention since it was first described in 1950. A near-isogenic line (NIL) of Gossypium hirsutum cotton, AcB5, was generated in an otherwise bacterial-blight-susceptible 'Acala 44' background. The introgressed locus B5 in AcB5 conferred strong and broad-spectrum resistance to bacterial blight. Segregation patterns of test crosses under Oklahoma field conditions indicated that AcB5 is likely homozygous for resistance at two loci with partial dominance gene action. In controlled-environment conditions, two of the four copies of B5 were required for effective resistance. Contrary to expectations of gene-for-gene theory, AcB5 conferred high resistance toward isogenic strains of Xanthomonas citri subsp. malvacearum carrying cloned avirulence genes avrB4, avrb7, avrBIn, avrB101, and avrB102, respectively, and weaker resistance toward the strain carrying cloned avrb6. The hypothesis that each B gene, in the absence of a polygenic complex, triggers sesquiterpenoid phytoalexin production was tested by measurement of cadalene and lacinilene phytoalexins during resistant responses in five NILs carrying different B genes, four other lines carrying multiple resistance genes, as well as susceptible Ac44E. Phytoalexin production was an obvious, but variable, response in all nine resistant lines. AcB5 accumulated an order of magnitude more of all four phytoalexins than any of the other resistant NILs. Its total levels were comparable to those detected in OK1.2, a highly resistant line that possesses several B genes in a polygenic background.


Assuntos
Sesquiterpenos , Xanthomonas , Gossypium/genética , Gossypium/microbiologia , Fitoalexinas , Doenças das Plantas/microbiologia , Xanthomonas/genética
3.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36233251

RESUMO

Xanthomonas axonopodis pv. citri (Xac) belongs to the Gram-negative species, causing citrus canker that seriously affects the fruit yield and quality of many rutaceae plants. Herein, we found that compound 2-(butyldisulfanyl) quinazolin-4(3H)-one exhibited remarkable anti-Xac activity in vitro with a half effective concentration (EC50) of 2.6 µg/mL, while the positive controls thiodiazole-copper with 57 µg/mL and bismerthiazol with 68 µg/mL and this compound showed great anti-citrus canker activity in vivo. This active compound also was confirmed to reduce biofilm formation, increase the level of reactive oxygen species, damage the morphological structure of the bacteria, and cause bacterial death. Proteomics and RT-qPCR analysis results indicated that this compound down-regulated the expression of enzymes in the MEP (2-methyl-D-erythritol 4-phosphate) pathway and might achieve destructive ability of Xac. Overall, this study indicates that such derivatives could be a promising scaffold to develop novel bactericides to control citrus canker.


Assuntos
Citrus , Xanthomonas axonopodis , Xanthomonas , Antibacterianos/farmacologia , Citrus/microbiologia , Cobre , Dissulfetos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Espécies Reativas de Oxigênio
4.
Saudi J Biol Sci ; 29(8): 103365, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35855768

RESUMO

Cowpea is well-known worldwide for its high protein content, versatile use, and adaptability. However, it is devastatingly affected by bacterial blight disease caused by Xanthomonas axonopodis pv. vignicola (Xav). The present study was designed to assess ten high-yielding cowpea varieties for bacterial blight resistance in two contrasting cropping seasons in Bangladesh. The varieties were evaluated using seed and stem inoculation with Xav bacteria, followed by phenotypic and molecular characterisation. The varieties were morphologically assessed using nine disease-related qualitative and quantitative traits, and genetic variations were investigated through nine SSR markers. Disease development varied significantly (P = 0.05) among the varieties. Substantially higher disease incidence was observed in the Kharif season compared to the Rabi season. Felon local, Dark Green-28, and Dark Green-1028 varieties were resistant in both seasons. On the other hand, BARI Felon-1 was highly susceptible to susceptible in both seasons as infections were over 50%. Moreover, plant height, leaf area, branch number, and leaf number significantly differed among the varieties. Besides, in the molecular study, polymorphism information content and Nei's gene diversity were detected as 0.3658 and 0.4089, respectively. Kegornatki showed the highest genetic variation vs Dark Green-1028. The UPGMA dendrogram segregated the ten cowpea varieties into two main clusters. This study revealed that three high-yielding varieties, viz., Dark Green-28, Dark green 1028, and Felon local, were resistant to bacterial blight and showed better performance in morpho-molecular characterisation. Therefore, these varieties can be integrated into future cowpea breeding programmes to develop cultivars that can control the high pressures of Xav.

6.
Pest Manag Sci ; 78(8): 3664-3675, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35611815

RESUMO

BACKGROUND: Xanthomonas axonopodis pv. glycines (Xag) is the causal agent of bacterial pustule disease and results in enormous losses in soybean production. Although isoflavones are known to be involved in soybean resistance against pathogen infection, the effects of exogenous isoflavones on soybean plants remain unexplored. RESULTS: Irrigation of soybean plants with isoflavone genistein inhibited plant growth for short periods, probably by inhibiting the tyrosine (brassinosteroids) kinase pathway, and increased disease resistance against Xag. The number of lesions was reduced by 59%-63% when applying 50 µg ml-1 genistein. The effects on disease resistance were observed for 15 days after treatment. Genistein also enhanced the disease resistance of soybean against the fungal pathogen Sclerotinia sclerotiorum. Exogenous genistein increased antioxidant capacity, decreased H2 O2 level and promoted the accumulation of phenolics in Xag-infected soybean leaves. Exogenous genistein reduced the amounts of endogenous daidzein, genistein and glycitein and increased the concentration of genistin, which was found to show strong antibacterial activity against the pathogen and to reduce the expression of virulence factor yapH, and flagella formation gene flgK. The expression of several soybean defense genes, such as chalcone isomerase, glutathione S-transferase and 1-aminocyclopropane-1-carboxylate oxidase 1, was upregulated after genistein treatment. CONCLUSIONS: The effects of exogenous genistein on soybean plants were examined for the first time, revealing new insights into the roles of isoflavones in soybean defense and demonstrating that irrigation with genistein can be a suitable method to induce disease resistance in soybean plants. © 2022 Society of Chemical Industry.


Assuntos
Fabaceae , Isoflavonas , Xanthomonas axonopodis , Resistência à Doença , Genisteína/metabolismo , Genisteína/farmacologia , Glicina/metabolismo , Isoflavonas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Xanthomonas axonopodis/genética , Xanthomonas axonopodis/metabolismo
7.
Microorganisms ; 11(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36677297

RESUMO

Pomegranate bacterial blight caused by Xanthomonas axonopodis pv. punicae (Xap) is a highly destructive disease. In the absence of host resistance to the disease, we aimed to evaluate the biocontrol potential of endophytic bacteria against Xap. Thus, in this study, we isolated endophytes from pomegranate plants, identified them on the basis of 16S rDNA sequencing, tested them against Xap, and estimated the endophyte-mediated host defense response. The population of isolated endophytes ranged from 3 × 106 to 8 × 107 CFU/g tissue. Furthermore, 26 isolates were evaluated for their biocontrol activity against Xap, and all the tested isolates significantly reduced the in vitro growth of Xap (15.65% ± 1.25% to 56.35% ± 2.66%) as compared to control. These isolates could reduce fuscan, an uncharacterized factor of Xap involved in its aggressiveness. Lower blight incidence (11.6%) and severity (6.1%) were recorded in plants sprayed with endophytes 8 days ahead of Xap spray (Set-III) as compared to control plants which were not exposed to endophytes (77.33 and 50%, respectively%) during in vivo evaluation. Moreover, significantly high phenolic and chlorophyll contents were estimated in endophyte-treated plants as compared to control. The promising isolates mostly belonged to the genera Bacillus, Burkholderia, and Lysinibacillus, and they were deposited to the National Agriculturally Important Microbial Culture Collection, India.

8.
Arch Microbiol ; 203(7): 4189-4199, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34076737

RESUMO

Bacillus velezensis is widely known for its inherent biosynthetic potential to produce a wide range of bio-macromolecules and secondary metabolites, including polyketides (PKs) and siderophores, as well as ribosomally and non-ribosomally synthesized peptides. In the present study, we aimed to investigate the bio-macromolecules, such as proteins and peptides of Bacillus velezensis strains, namely A6 and P42 by whole-cell sequencing and highlighted the potential application in controlling phytopathogens. The bioactive compounds, specifically secondary metabolites, were characterized by whole-cell protein profiling, Thin-Layer Chromatography, Infra-Red Spectroscopy, Nuclear Magnetic Resonance, Gas Chromatograph and Electro Spray Liquid Chromatography. Gas Chromatography analysis revealed that the A6 and P42 strains exert different functional groups of compounds, such as aromatic ring, aliphatic, alkene, ketone, amine groups and carboxylic acid. Whole-cell protein profiling of A6 and P42 strains of B. velezensis by nano-ESI LC-MS/MS revealed the presence of 945 and 5303 proteins, respectively. The in vitro evaluation of crude extracts (10%) of A6 and P42 significantly inhibited the rice pathogen, Magnaporthe oryzae (MG01), whereas the cell-free culture filtrate (75%) of strain P42 showed 58.97% inhibition. Similarly, in vitro evaluation of crude extract (10%) of P42 strain inhibited bacterial blight of pomegranate pathogen, Xanthomonas axonopodis pv. punicae, which eventually resulted in a higher inhibition zone of 3 cm, whereas the cell-free extract (75%) of the same strain significantly suppressed the growth of the pathogen with an inhibition zone of 1.48 cm. From the results obtained, the crude secondary metabolites and cell-free filtrates (containing bio-macromolecules) of the strains A6 and P42 of B. velezensis can be employed for controlling the bacterial and fungal pathogens of crop plants.


Assuntos
Ascomicetos , Bacillus , Doenças das Plantas , Xanthomonas axonopodis , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Bacillus/química , Cromatografia Líquida , Oryza/microbiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Punica granatum/microbiologia , Espectrometria de Massas em Tandem , Xanthomonas axonopodis/efeitos dos fármacos
9.
Antibiotics (Basel) ; 10(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062921

RESUMO

Bacterial leaf blight, which is caused by Xanthomonas axonopodis pv. allii, annually causes significant yield losses to Welsh onion in many producing countries, including Vietnam. In this study, we isolated and characterized lytic phages Φ16, Φ17A and Φ31, specific to X. axonopodis pv. allii and belonging to a new phage species and genus within the Autographiviridae, from four provinces in the Mekong Delta of Vietnam. Moreover, we evaluated their efficacy for the biocontrol of leaf blight in greenhouse and field conditions. When applying the three highly related phages individually or as a three-phage cocktail at 108 PFU/mL in greenhouse conditions, our results show that treatment with Φ31 alone provides higher disease prevention than the two other phages or the phage cocktail. Furthermore, we compared phage concentrations from 105 to 108 and showed optimal disease control at 107 and 108 PFU/mL. Finally, under field conditions, both phage Φ31 alone and the phage cocktail treatments suppressed disease symptoms, which was comparable to the chemical bactericide oxolinic acid (Starner). Phage treatment also significantly improved yield, showing the potential of phage as a biocontrol strategy for managing leaf blight in Welsh onion.

10.
Pest Manag Sci ; 77(4): 1668-1673, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33202090

RESUMO

BACKGROUND: Xanthomonas axonopodis pv. glycines (Xag) is a hazardous pathogen able to cause bacterial pustule disease in soybean, reducing crop yield and quality. Although flavonoids rutin and genistein are known to play an important role in soybean defence, soybean is only able to produce Biochanin A in low concentration. RESULTS: In this work, Biochanin A was found to produce higher antibacterial activity against Xag in comparison with genistein (minimum inhibitory concentration < 100 µg/mL). Biochanin A was able to inhibit DNA synthesis and flagella formation in Xag, and altered the composition of the bacterial membrane. These effects reduced swimming motility, extracellular protease activity and biofilm formation. Further, Biochanin A was tested for the control of Xag in soybean leaves, showing similar, or even higher, inhibitory ability in comparison with some products commonly used for the control of this pathogen. CONCLUSIONS: The antibacterial properties of Biochanin A against Xag have been studied for the first time, revealing new insights on the potential applications of this isoflavonoid for the management of bacterial pustule disease. © 2020 Society of Chemical Industry.


Assuntos
Xanthomonas axonopodis , Xanthomonas , Antibacterianos/farmacologia , Genisteína/farmacologia , Glicina , Doenças das Plantas
11.
Microbiol Res ; 240: 126560, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32721820

RESUMO

Xanthomonas axonopodis pv. punicae (Xap), the bacterial blight pathogen of pomegranate, incurs substantial loss to yield and reduces export quality of this economically important fruit crop. During infection, the bacterium secretes six non-TAL (Xop) effectors into the pomegranate cells through a specialized type three secretion system (T3SS). Previously, we demonstrated the role of two key effectors, XopL and XopN in pathogenesis. Here, we investigate the role of rest effectors (XopC2, XopE1, XopQ and XopZ) on disease development. We generated null mutants for each individual effector and mutant bacterial suspension was infiltrated into pomegranate leaves. Compared to Xap wild, the mutant bacterial growth was reduced by 2.7-11.5 folds. The mutants produced lesser water-soaked lesions when infiltrated on leaves by 1.13-2.21 folds. Among the four effectors, XopC2 contributes highest for in planta bacterial growth and disease development. XopC2 efficiently suppressed the defense responses like callose deposition, reactive oxygen species (ROS) and the activation of immune responsive genes. Being a major contributor, we further characterize XopC2 for its subcellular localization, its protein structure and networking. XopC2 is localized to the plasma membrane of Nicotiana benthamiana like XopL and XopN. XopC2 is a 661 amino acids protein having 15 alpha and 17 beta helix. Our STRING and I-TASSER based analysis hinted that XopC2 interacts with multiple membrane localized plant proteins including transcription regulator of CCR4-NOT family, TTN of maintenance of chromosome family and serine/threonine-protein phosphatase 2A (PP2A) isoform. Based on the interaction it is predicted that XopC2 might involve in diverse functions like nuclear-transcribed mRNA catabolic process, maintenance of chromosome, hormone signaling and protein dephosphorylation activities and thereby suppress the plant immunity. Altogether, our study suggests that Xap largely depends on three non-TAL (Xop) effectors, including XopC2, XopL and XopN, to modulate pomegranate PTI for its unrestricted proliferation during bacterial blight development.


Assuntos
Imunidade Vegetal/fisiologia , Punica granatum/imunologia , Punica granatum/microbiologia , Sistemas de Secreção Tipo III/metabolismo , Xanthomonas axonopodis/fisiologia , Membrana Celular/metabolismo , Frutas , Peróxido de Hidrogênio , Desenvolvimento Vegetal , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Punica granatum/genética , Espécies Reativas de Oxigênio , Xanthomonas axonopodis/genética
12.
Biosci. j. (Online) ; 36(4): 1193-1202, 01-06-2020. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1147232

RESUMO

Yield and longevity of yellow passion fruit have been reduced by diseases such as the bacterial spot caused by Xanthomonas axonopodis pv. passiflorae. Genetic resistance has been confirmed as the most efficient and economical correct option to minimize this disease problem. Aiming at it, the objective of this research was to evaluate the incidence, severity and progression of the disease in 12 genotypes of sour passion fruit, in seedling stage in nursery greenhouse after inoculation of Xanthomonas axonopodis pv. passiflorae. The inoculation was performed with an isolate collected in the Pipiripau Rural Nucleus, Brasilia-DF, named UnB-1397 (1x106 CFU/mL), through induction of injuries. There were performed four assessments, with interval of 7 days except the first which was performed 11 days after inoculation. The incidence was estimated by the percentage of plants affected. To evaluate the severity, it was used the diagrammatic scale validated by Costa et al. (2018), with adaptations, using the measurement of the affected area by necrotic lesions on the leaf. All genotypes were susceptible to bacteriosis, 5 being considered moderately susceptible: F1BRS Pérola do Cerrado x Rosa Intenso, Mar20#21, Mar20#15b, Mar20#24xMar20#40 and FB200PL4R2 x Mar20#2005, with a mean of severity ranging from 11 to 25% of injured area in leaves.


A produtividade e a longevidade dos pomares de maracujazeiro-azedo têm sido comprometidas em razão de doenças como a bacteriose, causada por Xanthomonas axonopodis pv. passiflorae. A resistência genética tem se confirmado como a opção mais eficiente e econômica para minimizar tal problema. Dessa forma, o objetivo deste trabalho foi avaliar a reação de 12 genótipos de maracujazeiro, em fase de mudas, sob cultivo protegido, à Xanthomonas axonopodis pv. passiflorae. A inoculação com isolado denominado UnB-1397 (1x106 CFU/mL),coletado no Núcleo Rural de Pipiripau, Brasília-DF, se deu pela indução de ferimentos. Foram realizadas 4 avaliações, com intervalo de 7 dias, sendo a primeira avaliação realizada 11 dias após a inoculação. A incidência foi estimada pela porcentagem de plantas afetadas. Para avaliação da severidade, foi utilizada escala diagramática validada por Costa et al. (2018), com adaptações, utilizando-se a mensuração da área foliar atingida por lesões nas folhas. Todos os genótipos se mostraram suscetíveis à bacteriose, sendo 5 considerados moderadamente suscetíveis: F1 BRS Pérola do Cerrado x Rosa Intenso, Mar20#21, Mar20#15b, Mar20#24 x Mar20#40 e FB200PL4R2 x Mar20#2005, apresentando uma média de severidade que variou de 11 a 25% de área ou tecidos foliares lesionados.


Assuntos
Passiflora , Xanthomonas axonopodis , Melhoramento Vegetal
13.
Molecules ; 25(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218317

RESUMO

Abstract: In order to discover new lead compounds with high antibacterial activity, a series of new derivatives were designed and synthesized by introducing a sulfonate or carboxylate moiety into the 1,3,4-oxadiazole structure. Antibacterial activity against two phytopathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac), was assayed in vitro. The preliminary results indicated that ten compounds including 4a-1-4a-4 and 4a-11-4a-16 had good antibacterial activity against Xoo, with EC50 values ranging from 50.1-112.5 µM, which was better than those of Bismerthiazol (253.5 µM) and Thiodiazole copper (467.4 µM). Meanwhile, 4a-1, 4a-2, 4a-3 and 4a-4 demonstrated good inhibitory effect against Xanthomonas axonopodis pv. citri with EC50 values around 95.8-155.2 µM which were better than those of bismerthiazol (274.3 µM) and thiodiazole copper (406.3 µM). In addition, in vivo protection activity of compound 4a-2 and 4a-3 against rice bacterial leaf blight was 68.6% and 62.3%, respectively, which were better than bismerthiazol (49.6%) and thiodiazole copper (42.2%). Curative activity of compound 4a-2 and 4a-3 against rice bacterial leaf blight was 62.3% and 56.0%, which were better than bismerthiazol (42.9%) and thiodiazole copper (36.1%). Through scanning electron microscopy (SEM) analysis, it was observed that compound 4a-2 caused the cell membrane of Xanthomonas oryzae pv. oryzae ruptured or deformed. The present results indicated novel derivatives of 5-phenyl sulfonate methyl 1,3,4-oxadiazole might be potential antibacterial agents.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Ácidos Carboxílicos/química , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Ácidos Sulfônicos/química , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Oryza/efeitos dos fármacos , Oryza/microbiologia , Relação Estrutura-Atividade , Xanthomonas/efeitos dos fármacos , Xanthomonas/ultraestrutura , Xanthomonas axonopodis/efeitos dos fármacos
14.
Front Microbiol ; 11: 91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117121

RESUMO

Phosphoglycerate kinase (Pgk), catalyzing the reversible conversions between glycerate-1.3-2P and glycerate-3P, plays an important role in carbohydrate metabolism. Here, we show that a Pgk-deficient mutant (NΔpgk) of Xanthomonas axonopodis pv. glycines (Xag) could grow in medium with glucose, galactose, fructose, mannose, or sucrose, as the sole carbon source, suggesting that Xag may employ Entner-Doudoroff (ED) and pentose phosphate pathway (PPP), but not glycolysis, to catabolize glucose. NΔpgk could not utilize pyruvate, suggesting that Pgk might be essential for gluconeogenesis. Mutation in pgk led to a reduction of extracellular polysaccharide (EPS) biosynthesis, cell motility, and intracellular ATP. As a result, the virulence of NΔpgk was significantly compromised in soybean. NΔpgk could be fully complemented by the wild-type pgk, but not by clp (encoding Crp-like protein). qRT-PCR analyses demonstrated that pgk is regulated by the HrpG/HrpX cascade, but not by Clp. These results suggest that Pgk is involved in carbohydrate utilization, EPS biosynthesis, and cell motility of Xag independent of Clp.

15.
Ann Bot ; 124(7): 1185-1198, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31282544

RESUMO

BACKGROUND AND AIMS: The nuclear factor Y (NF-Y) transcription factor complex is important in plant growth, development and stress response. Information regarding this transcription factor complex is limited in cassava (Manihot esculenta). In this study, 15 MeNF-YAs, 21 MeNF-YBs and 15 MeNF-YCs were comprehensively characterized during plant defence. METHODS: Gene expression in MeNF-Ys was examined during interaction with the bacterial pathogen Xanthomonas axonopodis pv. manihotis (Xam). The yeast two-hybrid system was employed to investigate protein-protein interactions in the heterotrimeric NF-Y transcription factor complex. The in vivo roles of MeNF-Ys were revealed by virus-induced gene silencing (VIGS) in cassava. KEY RESULTS: The regulation of MeNF-Ys in response to Xam indicated their possible roles in response to cassava bacterial blight. Protein-protein interaction assays identified the heterotrimeric NF-Y transcription factor complex (MeNF-YA1/3, MeNF-YB11/16 and MeNF-YC11/12). Moreover, the members of the heterotrimeric NF-Y transcription factor complex were located in the cell nucleus and conferred transcriptional activation activity to the CCAAT motif. Notably, the heterotrimeric NF-Y transcription factor complex positively regulated plant disease resistance to Xam, confirmed by a disease phenotype in overexpressing plants in Nicotiana benthamiana and VIGS in cassava. Consistently, the heterotrimeric NF-Y transcription factor complex positively regulated the expression of pathogenesis-related genes (MePRs). CONCLUSIONS: The NF-Y transcription factor complex (MeNF-YA1/3, MeNF-YB11/16 and MeNF-YC11/12) characterized here was shown to play a role in transcriptional activation of MePR promoters, contributing to the plant defence response in cassava.


Assuntos
Manihot , Xanthomonas axonopodis , Fator de Ligação a CCAAT , Resistência à Doença , Humanos , Proteínas de Plantas
16.
Proteomics ; 20(1): e1900125, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693783

RESUMO

Methyltransferases (MTases) are enzymes that modify specific substrates by adding a methyl group using S-adenosyl-l-methionine. Functions of MTases have been extensively studied in eukaryotic organisms and animal pathogenic bacteria. Despite their importance, mechanisms underlying MTase function in plant pathogenic bacteria have not been studied in depth, as is the case of Xanthomonas axonopodis pv. glycines (Xag) that causes bacterial pustule disease in soybean crops worldwide. Here, the association between Xag proteome alterations and three MTase-overexpressing strains, Xag(XgMT1), Xag(XgMT2), and Xag(XgMT3), compared to Xag carrying an empty vector, Xag(EV) is reported. Using label-free shotgun comparative proteomic analysis, proteins are identified in all three biological replicates of the four strains and ranged from 1004 to 1082. In comparative analyses, 124, 135, and 134 proteins are differentially changed (over twofold) by overexpression of XgMT1, XgMT2, and XgMT3, respectively. These proteins are also categorized using cluster of orthologous group (COG) analyses, allowing postulation of biological mechanisms associated with three MTases in Xag. COGs reveal that the three MTases may play distinct roles, although some functions may overlap. These results are expected to allow new insight into understanding and predicting the biological functions of MTases in plant pathogenic bacteria. Data are available via ProteomeXchange (Identifier PXD012590).


Assuntos
Proteínas de Bactérias/metabolismo , Metiltransferases/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Xanthomonas axonopodis/enzimologia , Isoenzimas/metabolismo , Doenças das Plantas/microbiologia , Xanthomonas axonopodis/fisiologia
17.
Int J Biol Macromol ; 156: 1600-1605, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31790738

RESUMO

In this study, the antibacterial activities of colloidal chitosan, chitosan solution, and chitooligosaccharide solution were evaluated against Xanthomonas axonopodis pv. glycines grown in peptone sucrose broth (PSB) medium. Treatment with colloidal chitosan (0.01, 0.025, and 0.05%) inhibited X. axonopodis pv. glycines growth only until 36 h. Thin-layer chromatography analysis detected some metabolites, consistently with the cell growth pattern. Two chitooligosaccharides (1-3 kDa and 5-10 kDa) dissolved in distilled water and acetic acid did not exhibit antibacterial activity against X. axonopodis pv. glycines at all tested concentrations (0, 0.001, 0.005, 0.01, 0.015, 0.02, 0.025, and 0.05%). Compared to the control, the chitosan solution decreased X. axonopodis pv. glycines cell growth by 58.7% and 99.0% at concentrations of 0.015% and 0.02%, respectively, after 3 d of incubation. The chitosan solution exhibited the highest antibacterial activity at pH 6.5. However, the antibacterial activity of chitosan decreased in the presence of NaCl and MgCl2.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Quitosana/farmacologia , Xanthomonas axonopodis/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Soluções , Xanthomonas axonopodis/citologia
18.
J Biotechnol ; 309: 20-28, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31863800

RESUMO

To meet the food demand of growing population, agricultural productivity needs to be increased by employing safe strategies without harming ecosystem. Silver nanoparticle (AgNP) using a green approach has become a promising substitute to the synthetic pesticides to overcome pest menace. In this study, AgNPs were synthesized from Solanum torvum fruit extract and their bactericidal property against phyto bacteria was shown. UV-vis spectroscopic observation revealed a surface resonance peak of 440 nm corresponding to the formation of AgNPs. Microscopic and particle-size analyses showed a nearly spherical size, with an average diameter of 27 nm. Surface charge and polydispersity index of the synthesized AgNPs were -11.8 mV and 0.29, respectively. Powder X-ray diffraction, energy-dispersive X-ray and Infrared spectroscopy techniques were used to explore phase formation, composition and possible biological molecules involved in AgNP formation. AgNPs exhibited minimum inhibitory concentrations of 6.25 µg mL-1 and 12.5 µg mL-1 against bacterial plant pathogens Xanthomonas axonopodis pv. punicae and Ralstonia solanacearum. In-vitro disk-diffusion assay showed inhibition zones of 11.4 ± 1 mm for R. solanacearum and 18.1 ± 1 mm for X. axonopodis pv. punicae treated with 50 µg mL-1 AgNPs. The AgNPs generated intracellular reactive oxygen species in the pathogens. DNA damage and DNA replication inhibition studies showed genotoxicity of AgNPs to the bacterial cells. A plant toxicity study demonstrated a nontoxic effect of the synthesized NPs. Overall; the results show that AgNPs can be used as an economically feasible, ecologically safe and effective approach to overcome bacterial diseases.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Ralstonia solanacearum/efeitos dos fármacos , Prata/química , Solanum/química , Xanthomonas axonopodis/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Bacteriano/análise , Frutas/química , Química Verde , Testes de Sensibilidade Microbiana , Microscopia Eletrônica , Tamanho da Partícula , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Difração de Raios X
19.
Biosci. j. (Online) ; 35(6): 1728-1746, nov./dec. 2019. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1049098

RESUMO

Bacterial spot (Xanthomonas axonopodis pv. passiflorae) significantly reduces yellow passion fruit (Passiflora edulis Sims) yield and longevity. A standard area diagram set (SADs) for severity assessment of bacterial spot on tri-lobed leaves of yellow passion was developed and validated in this study. The SADs consisted of eight severity levels (2; 4; 9; 18; 35; 58; 80; and 94%). For its validation, 20 raters, who initially estimated the disease severity without the aid of the SADs, were divided into four groups (G1 and G3, inexperienced; G2 and G4, experienced). Subsequently, G1 and G2 performed the second evaluation without the SADs, and G3 and G4 completed the second evaluation with the proposed SADs. The accuracy and precision of the assessments were determined by simple linear regression and by the Lin's concordance correlation coefficient (LCCC). The proposed SADs allowed accurate and precise quantification of bacterial spot severity, increasing the agreement between estimated and actual values. Inexperienced raters benefited the most from the use of the SADs. The increase in accuracy and precision in the non-aided groups, when present, was less pronounced than those increments observed in the SADs-aided groups. The LCCC confirmed the increases in accuracy and precision detected by the linear regression analysis.


A bacteriose (Xanthomonas axonopodis pv. passiflorae) reduz significativamente a produção e longevidade do maracujazeiro azedo (Passiflora edulis Sims). Uma escala diagramática para a avaliação da severidade da bacteriose em folhas trilobadas do maracujazeiro azedo foi desenvolvida e validada neste estudo. A escala diagramática apresentou oito níveis de severidade (2; 4; 9; 18; 35; 58; 80 e 94%). Para a sua validação, os 20 avaliadores foram divididos em quatro grupos (G1 e G3, sem experiência; G2 e G4, com experiência), que inicialmente estimaram a severidade da doença sem auxílio da escala. Posteriormente, G1 e G2 fizeram outra avaliação sem escala, e G3 e G4 realizaram a avaliação com a escala proposta. A acurácia e a precisão das estimativas foram determinadas por regressão linear simples e pelo coeficiente de correlação de concordância de Lin (LCCC). A escala diagramática proposta permitiu quantificar a severidade da bacteriose de forma acurada e precisa, aumentando a concordância entre os valores estimados e os reais. Os avaliadores inexperientes foram os mais beneficiados pelo uso da escala. O aumento da acurácia e precisão nos grupos que realizaram dupla avaliação sem escala, quando ocorreu, foi mais discreto que os incrementos observados nos grupos que utilizaram a escala. O LCCC confirmou os incrementos da acurácia e precisão detectados pela análise de regressão linear.


Assuntos
Xanthomonas , Passiflora
20.
Appl Microbiol Biotechnol ; 103(11): 4605-4621, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30993385

RESUMO

Bacterial blight, caused by Xanthomonas axonopodis pv. punicae, Xap is a serious threat to commercially successful pomegranate (Punica granatum L) crop. Owing to the non-availability of disease-resistant varieties of pomegranate, integrated disease management involving change of season, adequate nutrition, and preventive sprays of bactericides is used to control Xap. We undertook a systematic study to assess the efficacy of metal-based nanomaterials (Cu, CuO, ZnO, CaO, MgO) for the control of Xap. The antimicrobial effectiveness was in the order Cu > ZnO > MgO > CuO with MIC (minimum inhibitory concentration) 2.5, 20, 190, 200, and 1600 µg/ml. A time-to-kill curve indicated that Cu nanoparticles (CuNPs) killed Xap cells within 30 min at 2.5 µg/ml. Under controlled conditions (polyhouse), foliar application of CuNPs (400 µg/ml) resulted in ~ 90 and ~ 15% disease reduction in 6-month-old infected plants at early (disease severity 10%) and established (disease severity 40%) stages of infection, respectively. In a subsequent field study on severely infected 7-year-old plants, applications of nanoparticles reduced the disease incidence by ~ 20% as compared to untreated control. Microscopic observations revealed that CuNPs reduced the bacterial colonization of the leaf surface. Anti-Xap activity of foliar applied CuNPs was on par with conventionally used copper oxychloride (3000 µg/ml) albeit at 8-fold reduced copper concentration. Thus, early disease detection and application of effective dosage of copper nanoparticles can indeed help the farmer in achieving rapid infection control. Further studies on use of combinations of nanoparticles for management of bacterial blight are warranted.


Assuntos
Antibacterianos/metabolismo , Lythraceae/microbiologia , Nanopartículas Metálicas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Xanthomonas/efeitos dos fármacos , Agricultura/métodos , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Incidência , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...